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Polynomial-type eigenfunctions 

J Heading 
Department of Applied Mathematics, The University College of Wales, Penglais, 
Aberystwyth, Dyfed, SY23 3BZ, UK 

Received 25 January 1982 

Abstract. The differential equation for the harmonic oscillator is generalised to include 
an interaction potential containing a positive definite quadratic denominator. Conditions 
are developed under which certain eigenfunctions take the form of an exponential function 
multiplied by a polynomial. The problem reduces to that of finding the eigenvalues of a 
certain matrix that is tridiagonal in form. Properties of the eigenvalues of this matrix are 
investigated, since they are functions of a parameter occurring in the positive definite 
quadratic form. The asymptotic forms of these eigenvalues are developed together with 
computed results expressed as curves showing the variation of the eigenvalues with respect 
to this parameter. 

1. Motivation and introduction 

Interest has centred recently on an eigenvalue problem associated with an ordinary 
differential equation containing two parameters instead of the usual one eigenvalue 
parameter; the equation has made its appearance, for example, in laser theory. Several 
lines of approach have been adopted in the investigation of the eigenvalues and 
eigenfunctions of the differential equation 

where z is real, g being real and non-negative, and where 1 w I + 0 as z +*CO along 
the real axis. E is the eigenvalue parameter, a spectrum of values existing for each 
real value of A .  In this paper, however, particular eigenfunctions are sought such that 
A is not independent of E, these eigenfunctions existing only for particular triplets 
(E, A,  g). The ratio appearing in the bracket may be regarded as a perturbation term, 
though we have no control over the magnitude of A in the following investigation. 

Kaushal (1979) has evaluated the asymptotic expansion of E in terms of the 
parameter h = g/2(1+ A)1'2, giving the terms of the expansion up to O(h3).  Numerical 
values of the first four eigenvalues are given for 50 pairs (g, A ) ,  when g = 0.1, 0.2, 
0.5,0.8, 1.0 and A = 0.1,0.2,0.5,1,2,5,10,20,50,100. Mitra (1978) has considered 
the equation for g, A > 0, and has calculated the first three eigenvalues for 90 pairs 
(g,A), with g=O.l, 0.5, 1, 2, 5 ,  10, 20, 50, 100 and A =0.1, 0.2, 0.5, 1, 2, 5 ,  10, 20, 
50, 100. Biswas et a1 (1973), using the Hill determinant method, calculated the 
eigenvalues of the equation 

d2w/dz2 + (E  - z 2  -Az2")w = 0 
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for m = 2 ,  3 ,  4 and 0.1 s A L 100, with a final remark that their method can also be 
used for the hz2/(1 +gz2)  interaction. Bessis and Bessis (1980) have given extensive 
numerical calculations based on the variational method with the harmonic oscillator 
functions as the basis set. Their principal table of results gives the first four eigenvalues 
for 121 pairs ( g ,  A ) ,  with g, A =0.1, 0.5, 1, 2,  5 ,  10, 20,  50, 100, 200, 500. Flessas 
(1981) has given a brief investigation when A <0, in which eigenfunctions have been 
found in the form e-z2’2u(z), where U is a polynomial in z 2 ,  of degree 2 or 4 in 2. 

His treatment does not show the nature of the generalisation to polynomials of arbitrary 
degree, nor the properties enjoyed by the eigenvalues and eigenfunctions in the general 
case. 

In the present paper, we generalise the investigation of Flessas. By adopting a 
more systematic approach, and by observing the existence of a necessary factor in the 
polynomial U ,  we produce in matrix form the equations yielding the coefficients 
appearing in the polynomial of general degree. The parameters E and A in equation 
(1) are derived from the characteristic roots of an infinite matrix that is truncated 
without approximation; its characteristic vectors provide the coefficients of the poly- 
nomial. Properties of the roots are examined, and their behaviour as functions of g 
is discussed and illustrated numerically, attention being paid to their asymptotic forms. 
The relationships of the eigenvalues and eigenfunctions of equation (1) to those 
associated with non-perturbed polynomial-type forms are derived. 

2. The series solution 

Rearrangement of the expression in brackets in equation (1) yields 

dz 1 + g z  

where E = G + A / g ,  A = p g .  Since the asymptotic form of the required eigenfunction 
will contain the factor we introduce the change of dependent variable w = 
e-z2/2u, yielding 

d2u 
dz 
-- (3) 

where G = H + 1, E = H + 1 + A / g .  
If a polynomial solution exists for a particular pair of values of H and p,  it must 

contain the factor 1 + g z 2 ,  in order to cancel the identical factor in the denominator 
of the coefficient of U .  This simplifying feature has not, to our knowledge, been noted 
before, and certainly it is not obvious that this is a factor of the polynomial of degree 
4 explicitly calculated by Flessas (1981). Write, therefore, U = (1 + g z 2 ) p ,  where p is 
a power series generally, or in our present investigation a polynomial whose degree 
is two less than that of U. 

Substitution into equation (3) gives 

(1 + gz*)p”  + 4 g z p ’ +  2gp  - 2 t (  1 + g z 2 ) p ’  - 4 g z 2 p  + H (  1 + g z 2 ) p  + pp = 0. (4) 

Clearly p contains powers of z that ascend in steps of 2. 
If p commences with the term z c ,  the indicia1 equation arises only from the single 

term p ” ,  namely c (c  - 1) = 0, with roots 0, 1. We shall restrict ourselves only to the 
former value c = 0; the latter value is treated by the same method. (Of course no 
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logarithmic singularity can arise, since the equation has no singularity at z = 0.) Flessas 
failed to mention this second case, owing to his substitution z 2  = t apparently suggesting 
that polynomials had to commence with a constant, whereas a terminating series 
commencing with tl’* would also yield a polynomial in z. Two such polynomials are 
not simultaneously solutions of a particular equation ( 4 ) ,  since different values of H 
and @ are involved in each case. 

If it is possible for U to be a polynomial of degree 2n in z ,  then p will be of degree 
2n - 2 .  Write 

and we seek conditions for such polynomials to exist. 
In equation ( 4 ) ,  denote by -q the constant coefficient of p 

-4 = H + 2 g  +/A ( 5 )  

so 

E = -4 - 2 g +  1. 

When a polynomial solution is possible, the substitution of p2,,-2 into equation ( 4 )  
yields 2n as the highest power of z.  Its coefficient, which must vanish, is 

[ -2g (2n  - 2 ) - 4 g + H g ] a , - ,  

yielding H = 4n. Hence, from ( 5 )  

A = p g = - g ( q + 4 n + 2 g ) .  (7) 

The permanent relation between E and A is, from ( 6 )  and ( 7 ) ,  

E -A/g = 4n + 1 .  (8) 

Since this value equals G, equation ( 2 )  becomes 

4 n + l - z 2 + -  @ , ) w = o .  
dz l + g z  (9) 

We shall investigate later the orthogonality properties of this equation. 
The complete substitution of pznW2 into ‘equation (4) with H = 4 n  yields the 

coefficients of 1, z 2 ,  . . . , z . These must vanish, and written in matrix form these are 2n 

-4 2.1 0 . . .  . . .  
4.3 . * .  

-2.2 - q 

= 0. ( 1 0 )  

. . .  . . .  . . .  

-2(2n - 2 )  - q 

The n x n matrix in this equation is tridiagonal in form. 
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Obviously the q are the characteristic roots of, and the coefficients of the poly- 
nomials form the corresponding characteristic vectors of, the n x n matrix whose 
elements are given by 

the diagonal elements 

the above-diagonal elements 2i(2i - 1) = Yi,i+l (11) 
the below-diagonal elements 

2(i - 1)[(2i + 1)g -2IzXig  + Yi 

4(n - i + l)g =Xi,i-lg. 

The elements are linear in the parameter g. 

A = -g(2g +4),  where A < 0 when g > 0. 
Hence when n = 1, the one value of q obviously vanishes, and E = 1 - 2g, 

When n = 2, matrix (1 1) is 

(4"g l o g - 4  2 ,  

with 

q = 5g - 2 f (25g2 - 12g +4)ll2 

E=-7g+3T(25g2-12g+4) ' /2  

A = -7g2- 6g Fg(25g2- 12g +4)l" 

with the two values of A negative when g>O, these values having been given by 
Flessas. We shall later prove that A is negative for all values of n. 

3. Reduction to the Hermite polynomials 

When A = 0, the equation reduces to 

d2W/dz2 + (E - Z')W = 0. 

The assumption that U = (1 +gz2)p2,-2(z) is a polynomial of degree 2n demands that 
1 +gz2 should be a factor of the Hermite polynomial of degree 2n. Moreover, since 
A = 0, we have q = -4n - 2g, so the characteristic equation is no longer an equation 
for q, but an equation for g. The solutions gl, g2, .  . . , g, of the equation 

2g +4n 2.1 0 . . .  
4(n - l ) g  12g +4n -4 4.3 . . .  

= O  0 4(n-2)g 30g+4n-8  . . .  
. . .  

will yield the polynomial of degree 2n 

(1 +g1z2)(1 +g2z2). . . (1 +gnz2) 

proportional to the Hermite polynomial of degree 2n. 
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1 
3! H 6 ( Z )  =- 

-2 + 1 2 2  2z2 0 
-12+8z2 12z2 -8 

0 -4 -30 + 42' 

4. Orthogonality properties 

Equation (9) is of the form 

d2w/dz2 + [ f ( z ) + p h ( z ) ] w  = 0 (13) 
where, for a given integer n (thereby fixing f(z)) and real g, there are n values of p 
found by means of the characteristic equation of matrix (1 1). In order to assess the 
properties of the q-g curves for g 2 0, it is necessary to let g be negative in equation 
(1). Certainly on physical grounds g 3 0, but on mathematical grounds nothing that 
has been discussed so far prevents us from taking g C 0. Equation (1) then has a 
singularity on the real z axis when z 2  = -l/g, but the particular eigensolutions under 
discussion have no singularity at such points, although the second independent solution 
(not considered here) of any equation would have a singularity since the singularity 
of the equation is not apparent. When such particular solutions are substituted into 
equation (l), the factor 1 + gz2, g < 0, cancels, leaving no singularity, so the equation 
or its equivalent form may be integrated along the real axis if necessary. 

If some p values, related directly to the solutions of an nth degree polynomial 
equation with real coefficients, are complex they will occur in conjugate pairs p and 
p* say. When p* appears in equation (13), its solution will be w*. In the usual way, 
the multiplication of (13) by an eigenfunction w* and its conjugate equation by w, 
and the subtraction of these results, yields 

00 

O = ( p * - p )  e-'2(1+gz2)pp*dz. 
-W 

Provided g 2 0, the integrand is positive for all z, so p = p* and is therefore real; 
q is therefore real from (7). Now any branch q (and hence p )  is a continuous 
function of g, being a root of a polynomial equation whose coefficients are 
continuous functions of g. Moreover, the integrand of (14) consists of 2n integrals 
of the form 

e - ~ 2  2r I dz r=O,  1 ,2 , .  . . , 2 n - 1  
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whose coefficients are functions of g through 'the coefficients appearing in the poly- 
nomial p .  Consequently, the integral in (14) cannot vanish unless g has any real value 
that causes this sum of 2n integrals to vanish (the sum cannot be identically zero, 
since it cannot vanish for g 3 0). Whether such values of g actually exist is irrelevant 
in our argument; it is not necessary to investigate the possibility. Hence, apart from 
these possible values of g, p * - p = 0 and p is real. But p is a continuous function 
of g, so when g has one of these special values, p must still be real. The conclusion 
is that the values of p (and hence of 4) are always real for real g. 

Now consider two distinct values of p :  p1 and p2 for given n and g. The same 
treatment as before yields 

W 

0 = (PI - p d  e-"(1+ gz2)pm dz 

implying that this integral vanishes. 
Using the value of p given by (7), the differential equation (9) becomes 

where, when n is given, q and g are related by the characteristic equation. Suppose 
now that n and a definite real value of q are given; the vanishing of the determinant 
of the matrix appearing in (10) yields a polynomial equation of degree n - 1 in g with 
real coefficients which are polynomials in 4. Its solutions for g are either real, or else 
they occur in complex conjugate pairs, in which case let g and g* denote two roots: 

This equation for g has n - 1 roots provided the coefficient of g"-' does not vanish. 
By expansion down the first column of the determinant, this coefficient is found to be 

-[ 104 + 8(n - 1)](4.7)(6.9) . . . (2n - 2)(2n + 1); 

this vanishes when q = -&I - 1). Provided the coefficient of g"-' does not vanish at 
this particular value, the equation now has n - 2 finite roots for g, the remaining root 
being infinite. The coefficient of g"-' may be found by a method similar to that given 
in 0 6; when q = $(n - l), it is easily shown that this coefficient is proportional to 
(7q + 12n +4), which cannot vanish at this special value of q when n is a positive 
integer. This implies that n - 2 finite roots definitely exist at this value of 4. 

The coefficients of the polynomial p2n-2 are functions of n, q and g. Hence we 
note that w *  = e-zz'2(1 +g*z2)pgn-2 satisfies the equation conjugate to (15). Then, 
as before, 

or 
00 

2 (g*-g) 1 [(q +4n)z -21 e-z2p2n-2p2*n-2 dz = 0. 
-W 

If q s -4n, the integrand is negative for all z, hence g must be real. But if q > -4n, 
such a conclusion cannot be drawn immediately. However, the previous argument 
may again be used, to show that g is always real. 

These facts will be used in the next section to describe the q-g curves and their 
properties. 
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5. The q-g curves 

The characteristic equation gives the relation between q and g. Regarded as an 
equation of degree n in 4, its coefficients are continuous polynomials in g, so the roots 
are also continuous functions of g. Moreover, q cannot become infinite for finite 
values of g. We have shown that for each real value of g there are n real values 
of q. Conversely, regarded as an equation of degree n - 1 in g, its roots are continuous 
functions of q except when the coefficient of g"-' vanishes. We have already calculated 
this value to be q = -$(n - l ) ,  so the graph has an asymptote at this value of 4. Apart 
from this asymptote, we have shown that for each real value of q there are n - 1 real 
values of g. 

Computer calculations of the characteristic roots q for various positive and negative 
values of g enable us to present figures 1-3. These depict the q-g curves for n = 3 
(3 branches of q )  and n = 10 (10 branches of q) .  2 and 9 branches respectively extend 
to infinity in the first quadrant, 3 and 10 in the third quadrant, and one in the fourth 
quadrant. The horizontal asymptotes are given by q = -$ and -? respectively. There 
are 2 and 9 non-horizontal asymptotes, and the curves quickly approach these even 
for moderate values of / g l ;  the equations of these asymptotes are derived in the next 
section. 

When n = 10, figure 3 magnifies these curves near the origin. When g = 0, the 
values of q are obviously 0, -4, -8 and 0, -4, . . . , -36 in the two cases. The curves 
are squeezed into the very narrow gap formed by the two outermost curves with the 
horizontal asymptotes. 

For a general value of n, the n curves sweep monotonically and smoothly from 
the bottom left to the top right, with dqldg > 0. It is impossible for any curve to have 

i -'O0I 
Figure 1. The three q-g curves when n = 3, -5 G g G 5 .  
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500 k’ 

Figure 2. The ten q-g curves when n = 10, -5 s g 6 5 .  

Figure 3. Magnified q-g cuives when n = 10, -0.8 s g s 0.8. 
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a maximum, and so bend downwards with increasing g .  For if a curve has a maximum 
at the point (go ,  40), then the line 4 = 40 would cut the curves in at least n points (two 
coinciding at the maximum), which is impossible, since there are only n - 1 such 
intersections. 

This argument shows that, for all positive values of g (the physical case), every 
value of 4 is greater than the least value of 4 occurring when g = 0, namely 

4 > -4(n - 1 ) .  
From (7) 

- A / g  = 4 +4n  +2g > -4(n - 1 )  +4n +2g = 2 g  + 4  
showing that 

A > -(2g+4)g 

namely, A is always negative for positive g.  We have seen that A = -g(2g + 4 )  when 
n = 1 ;  the inequality does not apply in this case since the one 4-g curve is merely the 
horizontal straight line 4 = 0. 

6. The asymptotic lines of the q-g curves 

To find the asymptotes of the 4-g curves, we note that the characteristic equation of 
matrix ( 1 1 )  is an algebraic equation in the variables 4 and g, enabling us to employ 
the standard method for this case (see Sneddon 1976, p 38). Substitute q = Ag + B, 
equating the coefficients of g" and g"-' to zero. If solutions for A and B exist, this 
method not only provides their values but also proves the existence of the asymptotic 
lines. 

Let C,, denote the determinant of the square matrix in ( l o ) ,  and let Cr denote the 
determinant formed by the first r rows and r columns. Expanding along the bottom 
row, we have 

C,, =(X,g+ Yn-q)C,-1-2(n-1)(2n-3) *4gCn-2. 

We use the abbreviation 

Zi = 2 ( i -  1)(2i - 3 )  - 4(n - i +  1 )  
so 

C n  = (Xng + Yn -41Cn-1-ZngCn-2 
and similarly 

Cn-l= (Xn-lg+ Yn-l-q)Cn-~-zn-lgCn-~ 

c2 = (Xzg + Yz - 4 1 c1- z z g c o  

where C1= -4, CO = 1. Here, we use the symbols introduced in ( 1 1 ) .  
When we substitute 4 = Ag + B, Cr is a polynomial of degree r in 4, so we write 

C, = Ergr + Frgr-' +. . . 
where E, and F, are independent of g.  Hence, including all terms g" and g"- l ,  we have 

Cn = [ (X,  - A ) g  + Yn -B](En-lg n - 1  + Fn-lg"-2)-Zng(En-Zgn-1) + 
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and similarly for all the other equations for the C. Now C,, vanishes, and equating 
coefficients of g" and g"-' (and other powers respectively in the other equations), we 
obtain the series of equations 

0 = (X ,  -A)En-l  O=(Xn -A)Fn-1+(Yn-B)En-1-ZnEn-2 
En- l=  (Xn-1-A)En-2 Fn-l = (Xn-l-A)Fn-2+(Yn-1-B)E,-2-Zn-1En-3 

E2 = (XZ-A) ( -A)  F2= ( X z - A ) ( - B ) + ( Y 2 - B ) ( - A ) - 2 2 .  

It follows that 

A =Xn-k k = O ,  1,. . . , n - 1 

giving the n gradients of the n asymptotic lines, including the horizontal line k = n - 1. 
Then 

En-1 = En-2 = . , . = En-k = O 

and 

En-k-1 = (Xn-k-1 -Xn-k)(Xn-k-2 -Xn-k) * 1 * (xZ-Xn-k)(-Xn-k) 
En-k-2= (Xn-k-2 -Xn-k) . (xz-Xn-k)(-Xn-k) 

and so on. 

The first equation with non-vanishing terms is 
As far as the equations for the F are concerned, Fn-l = 0 if E,,-1 and EnP2 vanish. 

O=Fn-k+l = (Xn-k+l -Xn)Fn-k ( Y n - k + l  - B )  ' O-Zn-k+lEn-k+l 
and 

Fn-k = 0 ' Fn-k-l ( Y n - k  -B)En-k-l -Zn-kEn-k-~.  

Eliminating Fn-k, and using the values of the E, we find that 

Zn-k - Zn-k+l B = Yn-k- 
Xn-k-1 -Xn-k Xn-k+l -xn ' 

Using the values of X ,  Y, Z, and replacing n - k by j ,  j = 1, 2, . . . , n, we obtain 

A = 2 ( j  - 1)(2j + 1) 

4(j - 1)(2j - 3)(n - j  + 1) 4j(2j - l ) (n  - j )  B = -4(j - 1)+ - 
4j -3  4 j+ l  

yielding the equations of the n asymptotes. For example, when n = 3, 

q = -g q = 10g-D 76 q = 2 8 g - $  

straight lines that are clearly discerned in figure 1. 

already derived. The steepest gradient occurs when j = n, the line being 
The asymptote with zero gradient is given when j = 1, namely q =$(a - l), a value 

8n (n  - 1) 
q = 2(n - 1)(2n + 1)g - 

4 n - 3  * 

Since A is independent of n (except that j extends up to n), some gradients of 
asymptotes are identical for distinct values of n. 
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From the particular case n = 2, Flessas surmised the hypothesis that as the degree 
of the p~ lynomia lp~ , , -~  increases, with the value of g maintained in the range 0 g G 1, 
then large positive values of E can be obtained. Our results prove this statement. 
For the lowest 4-g curve is such that q = -4(n - 1) for small g, and so from (6) 

E = -q -2g + 1 =4n - 2g - 3 

increasing indefinitely with n. This result is also true for larger values of g when the 
asymptotic value of the lowest q is used 

E -$(n - 1) -2g + 1 

though n must be much larger than g so that E does not become negative. But the 
result is not true for those q-gcurves that have a higher position. Using the asq’mptotic 
values for the highest curve (16), we have 

8n(n - 1) 
4n -3 

E - -2(n - 1)(2n + 1)g + -2g+1 

so for large n, we have E - -4n2g, opposite in sign to that proposed in the hypothesis. 
To notice how the exact and asymptotic values of q compare for n = 10, table 1 

gives the values of q when j = 2 and 10, as given by computer calculation and by the 
two straight line asymptotes with equations 

q=1og-% j = 2  q=378g-% j = 1 0 .  

When j = 10, it is noteworthy how accurate the values of q are, even when g = 1. 

Table 1. 

j = 2 ,  n = 10 j =  10, n = 10 

g q exact q asymptotic q exact q asymptotic 

1 -2.462234 -8.133333 358.802934 358.540540 
736.540540 2 5.053647 1.866667 736.671728 

3 13.670505 11.866667 11 14.627997 11 14.540540 
4 23.040458 21.866667 1492.606132 1492.540540 
5 32.712668 31.866667 1870.593013 1870.540540 

7. Theorem relating to the eigenfunctions 

The characteristic vectors of matrix (11) provide the n coefficients appearing in the 
polynomial for each of the n values of q. We shall denote the n values of q 
by qg’, q:“’, . . . 4(njl in descending order. In figure 4, we have calculated the corres- 
ponding eigenfunctions w?), w(ln), w p )  when n = 3 for g = 0, 1, 2, the first value of 
g corresponding to the Hermite polynomials Ho, El2, H4. Since these polynomials 
are all even, we use the z 2  scale, with z 2  3 0 only. The curves are not normalised in 
any sense; the vertical scale is therefore without significance. 

For these chosen values of g, it can be seen that wb” has no real zeros; wi3)  has 
one real zero, and wi3)  has two real zeros for z 3 0 ,  and similarly for z s 0. This 
feature has a deeper significance for all values of n and all positive values of g. 
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Figure 4. The three eigenfunctions w against zz  when n = 3 for g = 0, 1,5; A corresponds 
to the largest value of q ( w ( z z )  has no zeros), B to the middle value of q ( w ( z 2 )  has one 
zero), C to the lowest value of q (~(2') has two zeros). 

We rewrite equation ( 1 5 )  as 

4 n + l - z  -- -- 
l + g z Z  l + g z 2  
4 n + 2 g )  I w = O  

and consider this for fixed n and g > 0. We have seen that there are n values of 4 
yielding n polynomials of degree 2n. There will be at most 2n - 2  real zeros of this 
polynomial, since the implicit factor 1 + gz2  cannot contribute real zeros. 

Quite apart from these n polynomials, for given n and g equation (17)  and the 
condition w + O  as z-**cY) form a Sturm-Liouville system, with q as the eigen- 
parameter, so there exists a decreasing sequence of eigenvalues of q :  Qo, QI, Qz, . . . , 
say, the corresponding eigenfunctions Wi possessing j real zeros in keeping with 
standard theory. When j = 2 n ,  the eigenfunction will have 2n real zeros, while for 
j > 2n the number of zeros exceeds 2n. Consequently the values of q that yield the 
polynomial-type eigenfunctions must be Qo, Qz, Q4, . . . , &-2,  the largest being 
Qo. So Qo yields the polynomial of degree 2n with no real zeros, and generally 
QZr = qr yields the polynomial ( 1  + g z 2 ) p 2 , - 2  with 2r real roots. That is, these n even 
polynomials with the exponential factor form the first n even eigenfunctions of 
equation (17). The subsequent eigenfunctions do not contain a polynomial factor. 

If, finally, we consider the odd eigenfunctions when the root c = 1 of the indicia1 
equation is used, we find that 

U = ( 1  + gz2)z  (1 + a l z 2 +  u2z4 + . . . + u , - l ~ ~ ~ - ~ )  

requires H = 4n + 2,  and that the equation for w is 

w =o. 

With the same conditions as z + fa, this forms a Sturm-Liouville system distinct 
from (17),  though it is amenable to the same basic treatment. Hence the odd 
polynomial-type eigenfunctions produced for fixed n and g are not the ones associated 
with the gaps Q1, Q3,. . . of the spectrum yielded by (17) .  Equation (18)  will have 
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its own gaps in its spectrum. The gaps in both sequences of eigenfunctions must be 
filled by functions distinct from polynomial-types. 

Equation (17) and the condition as z + fa form a Sturm-Liouville system for any 
value of n, but our method calculates some of the eigenvalues for the integers 
n = 1,2,  . . . . When g = 1, these have been calculated for 1 s n s 10, and the results 
are exhibited in figure 5 .  (Apart from the range -20 < 4 < 20 approximately, these 
curves could have been deduced from the asymptotic form of 4.) The overall shape 
of the Qo, Q2,, . , curves is evident. When n is not an integer, the values of 
Qo, Q2, . . . can be read off approximately from the graph, or an interpolation procedure 
may be used to calculate these intermediate values of the Q from the calculated 
results. Similarly by considering the Qj against j graphs for given n, the gaps in the 
spectrum can be found graphically or by interpolation. 

9 

Figure 5. The n-q curves for 1 s n 10, showing 00, Qz, . . . , Q I ~ .  
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